Impact of Missing Value Imputation on Classification for DNA Microarray Gene Expression Data—A Model-Based Study

نویسندگان

  • Youting Sun
  • Ulisses Braga-Neto
  • Edward R. Dougherty
چکیده

Many missing-value (MV) imputation methods have been developed for microarray data, but only a few studies have investigated the relationship between MV imputation and classification accuracy. Furthermore, these studies are problematic in fundamental steps such as MV generation and classifier error estimation. In this work, we carry out a model-based study that addresses some of the issues in previous studies. Six popular imputation algorithms, two feature selection methods, and three classification rules are considered. The results suggest that it is beneficial to apply MV imputation when the noise level is high, variance is small, or gene-cluster correlation is strong, under small to moderate MV rates. In these cases, if data quality metrics are available, then it may be helpful to consider the data point with poor quality as missing and apply one of the most robust imputation algorithms to estimate the true signal based on the available high-quality data points. However, at large MV rates, we conclude that imputation methods are not recommended. Regarding the MV rate, our results indicate the presence of a peaking phenomenon: performance of imputation methods actually improves initially as the MV rate increases, but after an optimum point, performance quickly deteriorates with increasing MV rates.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Feature Selection and Classification of Microarray Gene Expression Data of Ovarian Carcinoma Patients using Weighted Voting Support Vector Machine

We can reach by DNA microarray gene expression to such wealth of information with thousands of variables (genes). Analysis of this information can show genetic reasons of disease and tumor differences. In this study we try to reduce high-dimensional data by statistical method to select valuable genes with high impact as biomarkers and then classify ovarian tumor based on gene expression data of...

متن کامل

به کارگیری روش‌های خوشه‌بندی در ریزآرایه DNA

Background: Microarray DNA technology has paved the way for investigators to expressed thousands of genes in a short time. Analysis of this big amount of raw data includes normalization, clustering and classification. The present study surveys the application of clustering technique in microarray DNA analysis. Materials and methods: We analyzed data of Van’t Veer et al study dealing with BRCA1...

متن کامل

Missing value estimation for DNA microarray gene expression data: local least squares imputation

MOTIVATION Gene expression data often contain missing expression values. Effective missing value estimation methods are needed since many algorithms for gene expression data analysis require a complete matrix of gene array values. In this paper, imputation methods based on the least squares formulation are proposed to estimate missing values in the gene expression data, which exploit local simi...

متن کامل

Missing value estimation methods for DNA microarrays

MOTIVATION Gene expression microarray experiments can generate data sets with multiple missing expression values. Unfortunately, many algorithms for gene expression analysis require a complete matrix of gene array values as input. For example, methods such as hierarchical clustering and K-means clustering are not robust to missing data, and may lose effectiveness even with a few missing values....

متن کامل

Effects of Missing Value Imputation on Down-stream Analyses in Microarray Data

Amongst the high-throughput technologies, DNA microarray experiments provide enormous quantity of genes and arrays with biological information to disease. The studies of gene expression values in various conditions and various organisms in public health have led to the identification of genes to the comparison between tumor and normal, clinically relevant subtypes of tumor, and prognostic signa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2009  شماره 

صفحات  -

تاریخ انتشار 2009